
Two FCA-Based Methods for Mining Gene

Expression Data
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Abstract. Gene expression data are numerical and describe the level
of expression of genes in different situations, thus featuring behaviour of
the genes. Two methods based on FCA (Formal Concept Analysis) are
considered for clustering gene expression data. The first one is based on
interordinal scaling and can be realized using standard FCA algorithms.
The second method is based on pattern structures and needs adapta-
tions of standard algorithms to computing with interval algebra. The
two methods are described in details and discussed. The second method
is shown to be more computationally efficient and providing more read-
able results. Experiments with gene expression data are discussed.

1 Introduction

Gene expression data (GED) consist of numerical tables with thousands of
genes in rows and dozens of biological environments or situations (different cells,
times,. . . ) in columns (See Table 1). Each table entry is called an expression
value and reflects the behaviour of the gene in a row in the situation in column.
A whole line is a numerical vector called the expression profile of the gene. Genes
having similar expression profiles are said to be co-expressed. GED analysis is of
high interest mainly for the identification of groups of co-expressed genes that
are known to possibly interact together within a same biological process [1].
GED analysis is an active area of research involving mainly data-mining meth-
ods: many clustering [2], biclustering [3,4] and FCA-based [5,6,7] methods have
been recently designed and applied in this domain.

Clustering methods group genes into clusters w.r.t. a global similarity, e.g.
based on Euclidean distance, of their expression profiles. Clustering may fail
to detect biological processes common only to some columns of a dataset [1,3].
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To overcome this difficulty, biclustering algorithms have been suggested [3,8].
Biclusters in GED are defined as groups of genes that have similar expression
values in a same group of situations, but not necessarily all. However, we know
that most of the genes are involved in several processes [1]: extracted biclusters
should overlap. Then extracting “homogeneous” biclusters is difficult as the num-
ber of possible groups may grow exponentially. Biclustering algorithms generally
extract k best biclusters w.r.t. an evaluation function that relies on heuristics:
Their complete enumeration is generally not possible, interesting patterns may
also be missed [3,5].

This problem is limited when considering binary GED, i.e. binary relations
between the set of genes and the set of situations [4,9]. A numerical GED is scaled
before binary biclusters are extracted. Intuitively, a bicluster is a rectangle in
a binary table (modulo line and column permutations)“completely or mostly”
filled with crosses, e.g. like in Table 4. Then a complete enumeration respecting
some constraints like closure and minimal frequency is possible [4,5,10]. In [4]
the authors have proposed the Bi-Max bi-clustering algorithm, which extracts
inclusion-maximal biclusters defined as follows: Given m genes, n situations and
a binary table e such that eij = 1 or eij = 0 for all i ∈ [1, m] and j ∈ [1, n],
the pair (G, C) ∈ 2{1,...,n} × 2{1,...,m} is called an inclusion-maximal bicluster if
and only if (1) ∀i ∈ G, j ∈ C : eij = 1 and (2) �(G′, C′) ∈ 2{1,...,n} × 2{1,...,m}

with (a) ∀i′ ∈ G, ∀j′ ∈ C: ei′j′ = 1 and (b) G ⊆ G′ ∧ C ⊆ C′ ∧ (G′, C′) �=
(G, C). Note that an inclusion-maximal bicluster is nothing else than a formal
concept as defined in [11]. Formal Concept Analysis (FCA) can be viewed as
a binary biclustering method: It provides means for extracting local patterns
from a binary relation, namely formal concepts. In application to GED analysis
concept extents are maximal sets of genes related to a common maximal set of
situations (not necessarily all) [5,6,7].

However to apply either binary biclustering or FCA-based methods, one needs
to scale numerical data. Scaling introduces biases and may result in loss of infor-
mation [4,5,6,7,12]. Our goal here is to try to avoid these problems by designing
an FCA-based method that does not need a scaling, but would benefit from
formal and computational framework of FCA.

We propose two mathematically equivalent FCA-based methods for extracting
groups of co-expressed genes in numerical GED. Co-expression, or similarity
is considered by using interval values in initial data. The first approach uses
interordinal scaling. This scaling is able to reflect all possible value intervals
arising from a numerical dataset by a binary relation without loss of information.
However it produces large and dense binary data, which are hard to analyse with
existing FCA algorithms. This is probably the reason why it has never been
used for GED analysis. The second method relies on pattern structures [13] by
extending interval algebra in real numbers [13,14] and does not need any scaling.

We have experimented with both methods, trying to compare the quality of
their results and their computational efficiency. We show that both methods
extract equivalent sets of patterns, but the method based on pattern structures
is more efficient than that based on interordinal scaling, and provides with more
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readable and interpretable results. Processing pattern structures needs slight
adaptations of the FCA framework and well-known efficient algorithms (see [15]
for survey).

In Sections 2-3, we present gene expression data and related work. In Sec-
tions 4-5, we introduce and discuss both methods and an interestingness measure
that allows one to prune uninteresting groups of genes. In Sections 6-7 we discuss
computation and experimental results, and conclusion draws further researches.

2 Gene Expression Data

Gene expression is the mechanism that produces a protein from a gene in two
steps. First the transcription builds a copy of a gene called an mRNA. Then the
mRNA is translated into a protein. This mechanism differs in different biological
situations: for each gene the concentration, i.e. the relative quantity, of mRNA
and proteins depends on the current cell, time, etc. and reflects the behaviour
of the gene. Indeed, biological processes of a living cell are based on chemical
reactions and interactions mainly between proteins and mRNA. Thus, it is a
major interest to measure and analyse mRNA and protein concentration to
understand biological processes activated in a cell.

Microarray biotechnology is able to measure the concentration of mRNA of a
gene into a numerical value called gene expression value. This value characterizes
the behaviour of a gene in a particular cell. Microarray can monitor simultane-
ously the expression of a large number of genes, possibly the complete coding
space of a genome. When several microarrays are considered, the expression
value of a gene is measured in multiple situations or environments, e.g. differ-
ent cells, time points, cells responding to particular environmental stresses, etc.
This characterizes the behaviour of the gene w.r.t. all these situations and is
represented by a vector of expression values called a gene expression profile.

A gene expression dataset (GED) consists of a table with n rows corresponding
to genes and m columns corresponding to situations. A table entry is called an
expression value. A table line is called an expression profile. For example, in
Table 1, the expression value of g1 in the situation s1 is 5 and the expression
profile for the gene g1 is 〈5, 7, 6〉. In this paper, we consider the NimbleGen
Systems Oligonucleotide Arrays technology1: expression values are ranged from
0 (not expressed) to 65535 (highly expressed).

3 Related Work

In this paper we discuss methods of extracting co-expressed groups of genes, i.e.
sharing similar numerical values in some or all situations. Methods of these kind
allow discovering and describing biological processes in living cells [1].

For most of the binary biclustering methods, an l-cut scaling is operated by
using a single threshold l on expression values determined for each object (see

1 Details on this biotechnology can be found at http://www.nimblegen.com/
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[4,7,16] for threshold definitions). Expression values greater than this threshold
are said to be over-expressed and encoded by 1, otherwise by 0. Then strong
relations are extracted from the binary table representing genes simultaneously
over-expressed. In [6], we proposed a kind of generalization2 with an interval-
based scaling of numerical data, where interval number and size were chosen by
experts. Given a set of genes G, a set of situations S and a set of ordered intervals
T , (g, (s, t)) ∈ I, where g ∈ G, s ∈ S, t ∈ T and I and binary relation, means
that the expression value of the gene g is the interval of index t for the situation
s. Formal concepts of the context (G, S × T, I) represent groups of genes whose
expression values are in same intervals for a subset of situations (may be for all
situations), however these intervals are hard to determine a priori.

In [17], the authors present an FCA-based method to mine numerical data
that does not need any scaling procedure. This is a similar approach of the two
equivalent methods presented in this paper as extracted patterns are composed
of intervals arising from the data whose size is less than a given parameter
(see Section 6). However, in [17], no algorithm for dealing with large data was
proposed and no link to interordinal scaling was made. A similar approach for
the case of logical formulas was realized in [18] and [19].

4 Mining GED by Means of Interordinal Scaling

4.1 FCA: Main Definitions

Here we use standard definitions from [11]. Let G and M be arbitrary sets
and I ⊆ G × M be an arbitrary binary relation between G and M . The triple
(G, M, I) is called a formal context. Each g ∈ G is interpreted as an object, each
m ∈ M is interpreted as an attribute. The fact (g, m) ∈ I is interpreted as “g
has attribute m”. The two following derivation operators (·)′ are considered:

A′ = {m ∈ M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆ M

which define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆ M , a pair (A, B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆
B1). With respect to this partial order, the set of all formal concepts forms a
complete lattice called the concept lattice of the formal context (G, M, I). For
a concept (A, B) the set A is called the extent and the set B the intent of the
concept. Certain data are not given directly by binary relations, they require
transformation to contexts, called conceptual scaling. The choice of a scale is
done w.r.t. data and goals and directly affects the size and interpretation of
resulting concept lattice.
2 Using a threshold θ is equivalent to considering the interval [θ, maxi-

mum attribute value].
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Table 1. A gene expression data (GED)

s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

Table 2. Scale IN := (N, N,≤)|(N, N,≥)
for s1, N = {4, 5, 6}

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6

4 × × × ×
5 × × × ×
6 × × × ×

4.2 Interordinal Scaling for GED

Let G be a set of genes, S a set of situations, W ⊂ R a set of expression values
and I1 a ternary relation defined on the Cartesian product G × S × W , then
K1 = (G, S, W, I1) is the many-valued context representing a GED. (g, s, w) ∈ I1

or simply g(s) = w means that the gene g has an expression value w for the
situation s. In the example of Table 1, G = {g1, g2, g3, g4, g5}, S = {s1, s2, s3},
and I1 is illustrated, for example, by g1(s1) = 5, i.e. (g1, s1, 5) ∈ I1. Here the
objective is to extract formal concepts (A, B) from K1, where A ⊆ G is a subset
of genes that share “similar values” of W , i.e. lying in a same interval with
borders arising from the data in the situations of B ⊆ S. To this end, we use an
appropriate scale to build the derived formal context K2 = (G, S2, I2).

A scale is a formal context (cross-table) taking original attributes of K1 with
the derived ones of K2, i.e. a “plan” to construct K2. As attributes do not take
necessarily same values, each of them is scaled separately. Ws ⊆ W is the set of
values for the attribute s and is defined for each s ∈ S as follows: Ws ⊆ W and
(g, s, w) ∈ I1 =⇒ w ∈ Ws, ∀g ∈ G.The following interordinal scale (see pp. 42 in
[11]) can be used to represent all possible intervals of attribute values:

IWs = (Ws, Ws,≤)|(Ws, Ws,≥)

Indeed, the extents of this scale are value intervals. IWs is given for the many-
valued attributes s1 in Table 2, where Ws1 = {4, 5, 6}.

Once a scale is chosen, conceptual scaling consists in replacing each many-
valued attribute of K1 by a certain number of attributes to construct K2 w.r.t.
the chosen scale. Here each many-valued attribute s is replaced by 2 · |Ws| one-
valued attributes with names “s ≤ w” and “s ≥ w”, for all w ∈ Ws. For example,
many-valued attribute s1 is replaced by the following attributes {s1 ≤ 4, s1 ≤
5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s1 ≥ 6}. Derived context K2 = (G, S2, I2) is given in
Table 3 for the attribute s1 only. Note that this transformation is without loss
of information: the many-valued context can easily be reconstructed from the
formal context. For example, derived attributes for (g1, s1, 5) are s1 ≤ 5, s1 ≤ 6,
s1 ≥ 4, s1 ≥ 5. The only value in Ws1 respecting these predicates is 5 which is
the original value.

Density of a formal context (G, M, I) is defined as the proportion of ele-
ments of I w.r.t. the size of the Cartesian product G × M , i.e. density d =
|I|/(|G|.|S|). In the case of interordinal scaling, density of derived context K2 is
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Table 3. K2 = (G, S, I2) for the attribute s1

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 × × × ×

Fig. 1. Concept lattice of formal context K2 = (G, S, I2)

d =
∑ i≤p

i=1 |Wi|+1

2·∑ i≤p
i=1 |Wi|

. When |W | grows, d tends towards 50%. Moreover, the number

of derived attributes is 2 ·∑i≤p
i=1 |Wi| and |g′| = |W |+1 for all g ∈ G. This makes

the derived contexts dense, large and difficult to process. For comparison, den-
sity of binary data in [4] never exceeds 6% and the number of derived attributes
remains the same after scaling.

Then the concept lattice of K2 is given in Figure 1. Concept extents near
Bottom concept contain few genes, since the corresponding intents are related
to the smallest intervals. Top concept extent is composed of all genes as its
intent correspond to intervals of maximal length. The higher a concept lies in
the diagram, the larger is the interval corresponding to its intent. Concepts near
Top are not interesting: they allow for almost all possible values of attributes.
In Section 5.3 we discuss how to select most interesting concepts.

5 Mining a GED with Interval Pattern Structures

Now we suggest how to equivalently mine a gene expression data as a pattern
structure avoiding scaling. First we give a general intuition of interval pattern
structures that are formally defined and illustrated latter.

For a many-valued context (G, S, W, I), an object g ∈ G admits a unique
description 〈[a1, b1], . . . , [ai, bi], . . . , [ap, bp]〉, where p = |S|. Each attribute (or
situation in gene expression analysis) value is an interval (may be consisting of
one point) given by its left and right limits. In our example, description of the
object g1 is 〈[5, 5], [7, 7], [6, 6]〉. A set of objects also admits a description of the
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form 〈[a1, b1], . . . , [ai, bi], . . . , [ap, bp]〉, where for all objects of the set, the values
of all attributes lie within respective intervals. For our example, description of
the set {g1, g2} is 〈[5, 6], [7, 8], [4, 6]〉. This description is shared by all objects
having attribute values in respective intervals, in our example by objects of the
set {g1, g2, g5}. The object g3 is not contained in this set, because g3(s1) = 4
and 4 /∈ [5, 6]. The whole set of object sharing a description is closed w.r.t. a
closure operator. To formalize this construction one starts from interval algebra
on numbers and respective partial order on intervals. Two descriptions are com-
parable if all intervals of one description are contained in those of the other one,
incomparable otherwise.

5.1 General Definition of Pattern Structures

Formally, let G be a set (interpreted as a set of objects), let (D,�) be a meet-
semilattice (of potential object descriptions) and let δ : G −→ D be a mapping.
Then (G, D, δ) with D = (D,�) is called a pattern structure, and the set δ(G) :=
{δ(g) | g ∈ G} generates a complete subsemilattice (Dδ,�), of (D,�). Thus each
X ⊆ δ(G) has an infimum �X in (D,�) and (Dδ,�) is the set of these infima.
Each (Dδ,�) has both lower and upper bounds, resp. 0 and 1. Elements of D
are called patterns and are ordered by subsumption relation �: given c, d ∈ D
one has c � d ⇐⇒ c � d = c.

A pattern structure (G, D, δ) gives rise to the following derivation operators
(·)�:

A� =
�

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d � δ(g)} for d ⊆ D.

These operators form a Galois connection between the powerset of G and (D,�).
Pattern concepts of (G, D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, such
that A� = d and A = d�. For a pattern concept (A, d) the component d is called
a pattern intent and is a description of all objects in A, called pattern extent.
Intuitively, (A, d) is a pattern concept if adding any element to A changes d
through (·)� operator and equivalently taking e ⊃ d changes A. Like in case of
formal contexts, for a pattern structure (G, D, δ) a pattern d ∈ D is called closed
if d�� = d and a set of objects A ⊆ G is called closed if A�� = A. Obviously,
pattern extents and intents are closed.

5.2 Interval Patterns

In a pattern structure, objects have descriptions from a complete semilattice
(D,�), where the operation � is idempotent, commutative and associative and
returns “similarity” of its arguments. Here we consider a similarity operation
� based on an interval algebra on real numbers. For two intervals [a, b] and
[c, d], with a, b, c, d ∈ R and a ≤ c, we define their meet [a, b] � [c, d] as
[min(a, c), max(b, d)]. Then
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[a, b] � [c, d] ⇐⇒ [a, b] � [c, d] = [a, b]
⇐⇒ [min(a, c), max(b, d)] = [a, b] ⇐⇒ a ≤ c and b ≥ d.

Note that in contrast to usual intuition, this definition means that smaller in-
tervals subsume larger intervals.

An interval pattern structure (G, (D,�), δ) for a many-valued context (G, M,
W, I) with W ⊆ R is composed of a set of objects G, a meet semilattice (D,�)
and δ : G −→ D a mapping that associates a description to a set of genes. The
elements of D, called interval patterns, are vectors of p intervals, each interval
staying for an attribute or situation. The order on elements of D is given by the
natural subsumption order. For interval pattern descriptions c = 〈[ai, bi]〉i∈[1,p]

and d = 〈[ci, di]〉i∈[1,p]:

c � d ⇐⇒ c � d = c

⇐⇒ ai ≤ ci and bi ≥ di, ∀i ∈ [1, p]

The first operator of the Galois connection takes a set of objects (genes in our
application) to their common description, which is a vector of intervals (of gene
expression values). Consider two objects g1 and g2 with δ(g1) = 〈[ai, bi]〉i∈[1,p]

and δ(g2) = 〈[ci, di]〉i∈[1,p], then

{g1, g2}� =
�

δ({g1, g2}) = δ(g1) � δ(g2)

{g1, g2}� = 〈[min(ai, ci), max(bi, di)]〉i∈[1,p]

The second derivation operator takes a description (vector of intervals of gene
expression values) to the set of all objects sharing this description (set of genes
whose expression values are within intervals of the description for each attribute).
Consider d ∈ D, a pattern such that d = 〈[ai, bi]〉i∈[1,p], then

d� = {g ∈ G | d � δ(g)}
d� = {g ∈ G | d � δ(g) = d}

d� = {g ∈ G | δ(g) = 〈[ci, di]〉i∈[1,p], ai ≤ ci and bi ≥ di, ∀i ∈ [1, p]}
For a many-valued context (G, M, W, I) with W ⊂ R consider the re-

spective pattern structure (G, (D,�), δ) on intervals, the interordinal scaling
IWs = (Ws, Ws,≤) | (Ws, Ws,≥) from the previous Section, and the context KI

resulting from applying interordinal scaling IWs to (G, M, W, I). Consider usual
derivation operators (·)′ in context KI . Then the following obvious proposition
establishes an isomorphism between the concept lattice of KI and the pattern
concept lattice of (G, (D,�), δ).

Proposition. Let A ⊆ G. Subset A is an extent of the interval pattern struc-
ture (G, (D,�), δ) iff A ⊆ G is a concept extent of the context KI . Moreover,
A� = 〈[mi, mi]〉i∈[1,p] iff for all i ∈ [1, p] mi is the largest number n such that the
attribute ≥ n is in A′ and mi is the smallest number n such that the attribute
≤ n is in A′.
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Consider an example of pattern concept: ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉), the
equivalent concept of the interordinally scaled context is ({g1, g2, g5}, {s1 ≤
6, s1 ≥ 4, s1 ≥ 5, s2 ≥ 7, s2 ≤ 8, s2 ≤ 9, s3 ≤ 6, s3 ≤ 8, s3 ≥ 4}). The top
pattern concept is (G, 〈[4, 6], [7, 9], [4, 8]〉). The higher is a concept in the lat-
tice diagram, the larger are the intervals of its pattern intent, in particular, the
top pattern concept has maximal intervals. In the next section we consider the
problem of selecting most interesting concepts given by small intervals.

5.3 Interestingness of a Pattern Concept

The main goal of GED analysis is extracting homogeneous groups of genes, i.e.
groups of genes having similar expression values. Descriptions of homogeneous
groups should be composed of intervals with “small” sizes. This can be easily
expressed in terms of interval-based patterns. Consider parameter maxsize that
specifies the maximal length of an interval to allow for the whole description rep-
resent a homogeneous group of genes. Then in our experiments we may restrict
only to pattern concepts with pattern intents c = 〈[ai, bi]〉i∈[1,p] ∈ D satisfying
the constraint: ∃i ∈ [1, p] (bi − ai) ≤ maxsize. A stricter constraint would be
∀i ∈ [1, p] (bi − ai) ≤ maxsize.

Since both constraints are monotone (if an extent does not satisfy it, than a
larger intent does not satisfy it too), the subsets of patterns satisfying any of
these constraints make an order ideal of the lattice of pattern intents. In terms
of computation, using any of these constraints means that only some lower part
of the pattern lattice is computed, with patterns satisfying the constraints.

Another possibility is to consider additional ∗-values of interval descriptions
replacing intervals, whose lengths exceed threshold maxsize. So, if we choose
maxsize = 1 in our example, then {g1, g2}� = 〈[5, 6], [7, 8], ∗〉 and {g1, g4}� =
〈[4, 5], ∗, ∗〉.

6 Computation

Many algorithms for generating formal concepts from a formal context are
known, see e.g. a performance comparative [15]. Two families of algorithms are
distinguished: incremental and batch ones. At the ith step an incremental algo-
rithm builds the set of concepts for i first objects. Batch algorithms generate sets
of concepts from scratch, in a top-down way (resp. bottom up) or from maximal
to minimal intents (resp. from minimal to maximal intents). Experimental re-
sults of [15] highlight Norris (incremental), CloseByOne and NextClosure (both
bottom up) algorithms as best algorithms when the context is dense and large,
which is the case of interordinal derived formal contexts.

To compute pattern concepts, one needs generating infima of subsets of Dδ.
To this end we have chosen the standard FCA algorithms Norris, CloseByOne,
and NextClosure, which need only slight modifications for computing in pattern
structures [13]. Computing A� for a set A ⊆ G is realized by taking min (resp.
max) of all left (resp. right) limits of the intervals of each object description.
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For a pattern d ∈ D, d� is computed by testing for each object g ∈ G if each
interval of its description is included in the corresponding interval of d.

Worst-case upper bound time complexity of the three highlighted algorithms
for computing in a formal context (G, M, I) is O(|G|2 · |M | · |L|) with G the set
of genes, M the set of attributes and L the set of generated concepts [15]. The
worst-case time complexity of computing the set of interval pattern structures is
O(|G|2 · p · |L|), where p is the number of components in a description. In both
cases, the sets G and L are the same, thus relative efficiency of processing both
data representations depends on the number of different attribute values. For a
large number of values the time for computing concepts for the interordinally
scaled context may be too large. A projection should reduce the number of differ-
ent attribute values, and also the number of concepts. A simple way is to round
real attribute values to n digits after the comma or to a multiple of 10. A direct
consequence of this transformation is uncontrolled loss of information which we
would like to avoid. However, in this case we just loss precision on attribute
values that has limited consequences compared to the binary transformations
presented in Related work.

7 Experiments and Results

7.1 Data

Biologists at the UMR IAM (INRA) study interactions between fungi and trees.
They recently published the complete genome sequence of the fungus Laccaria
bicolor [20]. This fungus lives in symbiosis with many trees of boreal, montane
and temperate forests. The fungus forms a mixt organ on tree roots and is able to
exchange nutrients with its host in a specific symbiotic structure called ectomy-
corrhiza, contributing to a better tree growth and enhancing forest productivity.
On the other hand, the plant retributes its symbiotic partner by providing car-
bohydrates, allowing the fungus to complete its biological cycle by producing
fruit-bodies (e.g. mushrooms). It is thus a major interest to understand how
the symbiosis performs at the cellular level. The genome sequence of Laccaria
bicolor contains more than 20,000 genes [20]. It remains now to study their
expression in various biological situations in order to help to understand their
roles and functions in the biology of the fungus. Microarray-based gene expres-
sion study of different situations is a solution of choice. For example, it enables
to compare expression values of all the genes between contrasted situations like
free-living cells of the fungus (i.e. mycelium), cells engaged in the symbiotic
association (i.e. ectomycorrhiza), and specialized cells forming the fruit-body
structure (i.e. mushroom). A Laccaria bicolor gene expression dataset is avail-
able at the Gene Expression Omnibus of the National Center for Biotechnology
Information (NCBI)3. It is composed of 22,294 genes in lines and 5 various bio-
logical situations in columns, reflecting cells of the organism in various stages of
its biological cycle, i.e. free living mycelium (situation FLM), symbiotic tissues
(situations MP and MD) or fruiting bodies (situations FBe and FBl).
3 http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784

http://www.ncbi.nlm.nih.gov/geo/
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7.2 Biological Experiments

First, a selection from the 22,294 genes is processed. It consists by removing genes
having no significant difference of expression across all situations. For each couple
of situation, a t-test is performed and a p-value is attributed. If the p-value > 0.05
(cut-off classically applied in biology) for all couples of situations then the current
gene is removed from the dataset. Indeed, a gene that shows similar expression
values in all situations presents less interest to the biologist than a gene with high
differences of expression. Significant changes in gene expression may reflect a role
in a biological process and such genes can help the biologist to draw hypotheses.
The CyberT tool, available at http://cybert.microarray.ics.uci.edu/, was used
to filter the dataset and obtain 10,225 genes.

Another classical processing in GED analysis is to turn values into log2. In-
deed, it allows to capture small expression values into intervals that should be
larger for high expression values. Finally, the projection consists in rounding log2

expression values to one digit after the comma.
We ran the CloseByOne algorithm on the obtained interval pattern structure.

In this settings, we set maxsize = 0.35. We choose to retain a concept iff its
minimal support is greater than 10. Indeed, let us recall that concepts near
Bottom, i.e. in the lowest levels of the concept lattice, are composed of a few
genes. We also choose to retain a concept iff its description d has a size |d| ≥ 4:
its extent is composed of genes having similar values in at least four situations.
Processing lengths 4.2 hours and returns 91, 681 concepts.

Here we present two extracted patterns that group genes with high expression
levels in the fruit-bodies situations, whereas their expression remains similar
between the mycelium and symbiosis situations (Figure 2). In both patterns,
the levels measured are about twice higher in the fruit-body compared to the
other situations indicating that these genes correspond to biological functions of
importance at this stage.

The first pattern contains 7 genes, of which only 3 possess a putative cel-
lular function assignment based on similarity in international gene databases
at NCBI. Interestingly, these genes all encode enzymes involved in distinct
metabolic pathways. A gene encodes a 1-pyrroline-5-carboxylate dehydrogenase

Fig. 2. Graphical visualisation of two extracted concepts. X-axis is composed of situ-
ations, Y-axis is the expression values axis. Each line denotes the expression profile of
a gene in the concept extent. Values are taken before the logarithmic transformation.



262 M. Kaytoue et al.

which is involved in amino-acid metabolism, another correspond to an acyl-coA
dehydrogenase, involved in fatty acid metabolism and a last gene encodes a
transketolase, an enzyme involved in the pentose phosphate pathway of carbo-
hydrate metabolism. All these metabolic functions are essential for the fungus
and reflect that the fruit-body is a highly active tissue. The fruit-body is a spe-
cific fungal organ that differentiate in order to produce spores and that further
ensure spore dispersal in nature [21]. Previous gene expression analyses of the
fruit-body development conducted in the ectomycorrhizal fungus Tuber borchii
also reported the strong induction of several genes involved in carbon and ni-
trogen metabolisms [22] as well as in lipid metabolism [23]. The present results
are consistent with these observations and supports an important mobilization
of nutrient sources from the mycelium to the fruit-body. It seems obvious that
the primary metabolism requires to be adapted to use these sources in order to
properly build spores and provide spore-forming cells with nutrients [21].

The second pattern also contains 7 genes, of which only 3 possess a putative bi-
ological function. Interestingly, one of these genes encodes a pseudouridylate syn-
thase, an enzyme involved in nucleotide metabolism that might also be involved
in remobilization of fungal components from the mycelium to spore-forming cells
and spores. The 2 other genes encode a cytoskeleton protein (actin) and a pro-
tein related to autophagy (autophagy-related 10 protein), a process that can
contribute to the recycling of cellular material in developing tissues. Both func-
tions participate to reconstruction cellular processes [21], which is consistent with
involvement of metabolic enzymes in remobilization of fungal resources towards
the new organ in development.

Analysis of these two patterns that present a high expression level in the
fruit-body situation is highly informative, comforts existing knowledge in the
field and highlights the importance of remobilization in the developing organ.
These co-expressed genes share related roles in a particular process. This could
indicate that they are under the control of common regulators of gene expression.
Interestingly, these patterns also contained a total of 8 genes of unknown func-
tions, i.e. for which no functional assignment was possible in international gene
databases. There were 4 genes encoding hypothetical proteins with an homol-
ogy in databases but no detailed function and 4 genes not previously described
in fungi or other organism and which are considered specific to Laccaria bi-
color. There are about 30% of such genes specific to this fungus and these may
play specific roles in the biology of this soil fungus [20]. All these genes show
consistent profiles with those encoding metabolic functions. Thus, these genes
are interesting investigation leads as they may contain new enzymes not pre-
viously described of the pathways or eventual regulator of the cellular process.
Altogether, these results contribute to a better understanding of the molecular
processes underlying the fruit-body development.

7.3 Computer Experiments

Now we compare time performance and memory usage of three algorithms to
equivalently mine interordinal formal contexts (Section 4) and interval pattern
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structures (Section 5). We have implemented the Norris, NextClosure, and Close-
ByOne algorithms, for both processing formal contexts and pattern structures.
We have added the Charm algorithm [24] that extracts closed itemsets, i.e. con-
cept intents, in a formal context. FCA algorithms have been implemented in
original versions, plus the stack optimization for NextClosure and CloseByOne
as described in [15]. For interval pattern structures, we operate sligth modifica-
tions. Charm algorithm is run with the Coron Toolkit [25]. All implementations
are in Java: sets of objects and binary attributes are described with the BitSet
class and interval descriptions with standard double arrays. Computation was
run on Ubuntu 8.10 OS with Intel Core2 Quad CPU 2.40 Ghz and 4 Go RAM.

We tried to compare algorithms on the data presented in biological experi-
ments, i.e. an interval pattern structure from a many-valued context (G, S, W, I1)
where |G| = 10, 225 and |S| = 5. Even with projections, computation is infeasi-
ble. Indeed we do not consider here constraints like the maximal interval size: we
compute all infima of subsets of Dδ. Then we randomly selected samples of the
data, by increasing the number of objects. As attribute values are real numbers
with about five digits after the comma, the size of W is large. In worst case,
|W | = |G| × |S|, i.e. each attribute value is different in the dataset. This implies
very large formal contexts to process and a large number of concepts. We com-
pare time usage for this case, see Table 4. Norris algorithm draws best results
in formal contexts, which meets conclusions of [15] for large and dense contexts.
However, CloseByOne in pattern structures is better, and most importantly is
the only one that enables computation of very large collection of concepts.

When strongly reducing the size of W by rounding attribute values to the
integer, i.e. |W | << |G| × |S|, the Charm algorithm outperforms the others.
The Norris algorithms is still the best FCA-algorithms in formal contexts and
CloseByOne the best in pattern structures (see Table 5).

Table 4. Generation time in both data representations (no projection)

Datasets

|G| 10 20 30 40 50 75 100

|W | 50 100 150 199 249 374 252

density 51.00% 50.50% 50.33% 50.25% 50.20% 50.13% 50.20%

Generation time in formal contexts (in milliseconds)

Charm 60 916 16,469 N/A N/A N/A N/A

Next Closure 5 145 1,299 12,569 68,969 N/A N/A

Norris 2 90 609 5,180 28,831 N/A N/A

Close By One 3 106 906 7944 41,238 N/A N/A

Generation time in pattern structures (in milliseconds)

Next Closure 6 100 763 5,821 35,197 N/A N/A

Norris 6 172 1982 15,522 83,837 N/A N/A

Close By One 2 85 585 3,094 18,320 1,004,073 2,288,200

Concept set L

|L| 280 9,587 78,173 455,008 1,857,725 40,325,176 64,571,385
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Table 5. Generation time in both data representations. Attribute values are rounded.

Datasets

|G| 25 50 75 100 125 150 200

|W | 34 37 44 53 58 62 66

Generation time for formal contexts (in milliseconds)

density 51.47% 51.35% 51.14% 50.94% 50.86% 50.81% 50.76%

Charm 55 154 184 243 394 936 1856

Next Closure 100 933 3,333 22,973 30,854 78,790 593,416

Norris 38 320 861 2,697 5,954 15,359 46,719

Close By One 84 483 2,424 8,452 22,173 59,070 227,432

Generation time for pattern structures (in milliseconds)

Next Closure 59 372 1,924 6,215 15,417 42,209 143,501

Norris 44 479 2,602 7,243 16,257 40,991 109,814

Close By One 40 220 1,084 3,832 9,289 23,989 89,804

Concept set L

|L| 1,165 5,928 23,962 48,176 73,463 163,316 252,515

Then, when the number of attribute values w.r.t. |G| × |S| is low, computing
concepts in formal contexts is more efficient. For large datasets with many dif-
ferent attribute values, it is more efficient to compute with pattern structures.
The explanation is that for formal concepts the object intent representation is
a bit string whose length increases with the growth of |W |. Object descriptions
in pattern structure are arrays of constant size w.r.t. |W |. Therefore, processing
them uses less memory for datasets with high number of attribute values.

8 Conclusion

In this paper we discussed FCA-based methods for mining complex data like gene
expression data. We compared two mathematically equivalent methods for pro-
cessing numerical intervals: the first one using interordinal scaling and classical
FCA algorithms, and the second one which relies on interval pattern structures.
Pattern structures offer more concise representation, better scalability, and bet-
ter readability of the (pattern) concept lattice. Experiments show that when the
number of distinct attribute values is large, adaptation of ClosebyOne to pattern
structures is most efficient. We also confirmed a general conclusion of [15] for
the case of interordinal scaled contexts of our dataset, stating that the Norris
algorithm is more efficient than NextClosure and CloseByOne when only the set
of concepts needs to be generated, not the covering relation of the lattice.

We have shown how algorithms for processing interval pattern structures can
be adapted for particular data and goals. Indeed, the first introduced order of
description elements generates all possible descriptions w.r.t. the similarity op-
eration. For GED analysis we have made some propositions to retain “best”
concepts. Many other possibilities should be investigated. Another direction of
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further research may be models accounting for domain knowledge. The semi-
lattice of descriptions (D,�) may be viewed as an attribute hierarchy, where
domain knowledge (e.g. known functions of genes) may be encoded.
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